Занимательная Задача про Земной Шар и Мышь
Александр Александрович Ануфриев
Предположим, что земной шар по экватору плотно обтянут веревкой. Длину веревки увеличили на 1м. Образовавшийся зазор равномерно распределен по экватору. Сможет ли в этот зазор прошмыгнуть мышь? Некоторые говорили ДА, даже кошка это cделает. Некоторые говорили, что нет. Даже нано-супергерой не может этого сделать! В этой книге вы найдете, почему это не простой вопрос.
Предположим, что земной шар по экватору плотно обтянут веревкой. Длину веревки увеличили на 1м. Образовавшийся зазор равномерно распределен по экватору. Сможет ли в этот зазор прошмыгнуть мышь? Можно сделать мысленный эксперимент. Верёвка1 туго натянута вокруг Земного Шара по Экватору. Разрежем верёвку1, поднимем концы длиной 50см вертикально, Между поднятыми концами Верёвки1 будет проход шириной 100см, горизонтальная часть так и остаётся плотно притянутой к поверхности Земли, и пришьём к вертикальным концам верёвку2 длиною 1 метр. Пренебрегая толщиной верёвок, мы можем сказать что в этом месте комбинированная(новая) верёвка имеет проход размерами 100см в ширину и 50см в высоту. В такую щель и кошка и мышка и собака и математик пролезет. А вот если условия будут требовать равномерного распределения верёвки по длине Экватора, то этого дополнительного 1метра не хватит. Используем такой дополнительный 1метр в четырёх местах, получим 4 щели с размерами 25см в ширину и Двенадцать С Половиной см в высоту. Используем в пяти местах, получим 5 щелей с размерами 20см в ширину и 10см в высоту. Используем в десяти местах, получим 10 щелей с размерами 10см в ширину и 5см в высоту. Используем в ста местах, получим 100 щелей с размерами 1см в ширину и 1/2см в высоту. Используем в тысяче местах, получим 1000 щелей с размерами 1мм в ширину и 1/2мм в высоту. Ну и так далее, пока весь Экватор не заполнится. Если разрезать верёвку и поставить левый метровый кусок под углом 60 градусов, а также поставить правый метровый кусок под углом 60 градусов, то получится равнобедренная трапеция с основанием 2 метра. Верхнее основание будет равно 1 метру и там уместится дополнительная метровая верёвка. Мы получим трапецеидальную арку высотой в 866мм. Если использовать трапеции то они будут уменьшаться в размерах по мере рoста мест расположения. И очень скоро превратятся в нано-трапеции. А можно пойти и по другому пути. Длина Экватора 40000000 метров. Мы создали щель с размерами 1 метр в длину и 50см в высоту. На каждый метр Экватора мы займём высоту этой щели. 500мм/40000000 = 5мм/400000 = 1мм/80000 = 0.0000125мм. Это 0.0125 микрон. Толщина волоса человека рaвна 50 микрон. Ещё вариант. Для того чтобы равномерно распределить этот 1метр дополнительной верёвки, добавим кусочек от этой верёвки в каждый метр основной верёвки. В основной верёвке 40 000 000 метров. Разделим 1метровую верёвку на 40 миллионов кусочков, каждый размером 0.025 микрон. Даже если мы будем подкладывать под основную верёвку один такой кусочек каждый метр, то это её не поднимет. Можно обобщить задачу. Скажем так....Длина Экватора 40 000 000 метров. Если плотно обтянуть предмет верёвкой1 и добавить к ней верёвку2 длиной 1/40000000(одна сорокамиллионная)от длины верёвки1, насколько изменится натяжение верёвки? Можно проверить и практически. Ослабить гитарную или рояльную струну так, что длина увеличится на одну сорокамиллионную и послушать как изменится звук :) Большие цифры завораживают и мы не верим результатам…Если не думать о Глобусе то будет легче :) Снимем верёвку с Экватора и сделаем из неё равносторонний треугольник. Сторона равна 13333333.33333333 метра. Высота 11547005.383792 метров. Добавим 1 метр к периметру. Теперь сторона равна 13333333.66666667 метра. Высота 11547005.672467 метров. Разница в высоте треугольников 0.288675 метра. Как только мы возвращаемся к Глобусу, наш разум не хочет верить результатам. Длина верёвки1 = 40000000 метров, длина верёвки2 = 40 000 001 метр. Радиус1 = 40000000м/(2X3.14) = 40000000м/6.28 = 6369426.751592357м. Радиус2 = 40000001м/(2Х3.14) = 40000001м/6.28 = 6369426.910828025м. Радиус2 – Радиус1 = 6369426.9