Назад к книге «Алгоритм решения 10 проблемы Гильберта» [Дмитрий Васильевич Паршаков]

10 проблема Гильберта. Опровержение неразрешимости

Дмитрий Васильевич Паршаков

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..

Десятая проблема Гильберта. Алгоритмы для уравнения с тремя переменными во второй степени.

В 1900г. на 1 Международном математическом конгрессе, известный математик Давид Гильберт поставил перед математиками всего мира 23 задачи. Эти задачи принято называть "Проблемами Гильберта".

Решением десятой проблемы Гильберта стало признание ее неразрешимости, доказанное советским математиком Ю.В.Матясевичем в 1970г.

Доказательство неразрешимости Матиясевича признано как единственно допустимое, но возможно это не так.

Итак, для того, чтобы опровергнуть, либо подтвердить это доказательство нужно вначале напомнить задачу, определенную Д.Гильбертом в 10-й проблеме.

«Пусть задано диофантово уравнение с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах»