Научные исследования
Лиза Заикина
Я с детства испытывала огромное пристрастие к науке. В два года мое стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась любовь к математике. В младших классах после школы я писала свои математические теоремы, формулы и их доказательства мелом на стене доме. Я просто хотела писать формулу за формулой так, как просила душа. В школе я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. На третьем курсе института меня приняли в ученый совет, правда, тогда я не стремилась к этому, поэтому статус оказался для меня пустым местом.
ВСТУПЛЕНИЕ
«Сегодня именно тот день, когда я могу написать свои теоремы и не прятать ни от кого то, к чему лежит моя душа. Сегодня я могу быть собой.»
Я с детства испытывала огромное пристрастие к науке. Учебе я уделяла все свое время. Из-за плохой, как мне казалось, памяти, но огромного желания все знать, я учила уроки до поздней ночи и без выходных. Меня нельзя было назвать ботаником, потому что я умела активно отдыхать, чтобы набраться новых сил.
Я родилась такой. В два года стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась сильная любовь к математике. В младших классах после школы я писала математические теоремы, формулы и их доказательства мелом на доме. Мое родные считали, что я просто ухожу гулять, и мое занятие им жутко не нравилось. Я же просто хотела писать формулу за формулой так, как требовала душа.
Я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. Мне многое хотелось знать наизусть, и я очень печалилась, когда мой мозг что-то забывал. От переизбытка информации я могла не вспомнить имя одноклассника, да и вообще имена своих многочисленных друзей. Меня и любили, и ненавидели.
Для меня было важным знать каждый предмет на «отлично», но я могу сказать честно, я не испытывала ни разу ни с кем конкуренции. Для меня не было первых, потому что я занимала все позиции. На третьем курсе института меня приняли в ученый совет, правда, тогда я совсем не стремилась к этому, поэтому статус оказался для меня пустым местом.
Сегодня все страхи, насмешки и прочие комплексы остались позади. Я свободно могу писать научную книгу, веря, что она принесет пользу миру. Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем-то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые.
Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним. Я начинала писать книгу в очень большом объеме, с многословными рассуждениями и многочисленными примерами, но потом я решила сузить объем до минимума и привести лишь по одному примеру.
Спасибо Богу. Спасибо Божьей матери.
Глава 1
МАТЕМАТИКА
Теорема 1. Произведение n-го количество Х всегда равно произведению n-го количеству других Х, если мы имеем возможность вычислить хотя бы одно Х при некотором числе L.
Х1*Х2*Х3*Хn-1=X4*X5*Xn, при числе L=Хn-Хn-1
Доказательство:
Вычислим одно из Х, пусть это будет Х1
Х1=Х4*Х5/Х2*Х3, при L=(Х4+Х5)-(Х2+Х3)
Пусть Х2=1, Х3=2, Х4=3, Х5=4, тогда Х1=3*4/1*2=6
Полученный расчет в виде формулы: 6*1*2=3*4, при L=(3+4)-(1+2)=4
Пример. Учитель купил 2 альбома, при этом в его классе 32 ученика. Сколько не хватает альбомов, чтобы раздать их каждому ученику?
Решение: Х2=2, Х3=32, Х1-?
Х1*Х2=Х3, при L=Х3-Х2. Тогда Х1=Х3/Х2=32/2=16
В виде формулы: 16*2=32, при L=32-2=30
Ответ: Чтобы раздать каждому ученику альбом, необходимо купленное количество альбомов увеличить в 16 раз, то есть закупить еще 30 штук.
Теорема 2. Произведение n чисел определя