Метод конечных элементов
Дмитрий Альбертович Оголихин
Многие инженеры, несмотря на высшее образование, не знают, что такое метод конечных элементов (МКЭ) и оставляют задачи расчёта конструкций дорогостоящим программным продуктам типа Ansys или Nastran.Назначение этой книги – показать, что МКЭ является таким же несложным методом, как и весь сопромат.
Дмитрий Оголихин
Метод конечных элементов в MathCad
Введение
Метод конечных элементов – один из т. н. сеточных методов. Такие методы предполагают рассмотрение цельной конструкции как совокупности отдельных конечных элементов, как показано на рисунке 1.
Рисунок 1. Разбиение конструкции на конечные элементы. а – нумерация конечных элементов; б – нумерация узлов.
В качестве конечных элементов выступают знакомые нам из сопротивления материалов и строительной механики стержни, балки, плиты, оболочки и т. п. По сути своей решение методом конечных элементов сводится к решению уравнения задачи в динамической постановке:
M?d
u/dt
+C? du/dt+K?u = P
где M – матрица масс конструкции;
C – матрица демпфирования конструкции;
K – матрица жёсткости конструкции;
d
u/dt
– вектор ускорений узлов конструкции;
du/dt – вектор скоростей узлов конструкции;
u – вектор перемещений узлов конструкции;
P – вектор узловых нагрузок.
Если вектор узловых сил P не меняется во времени, то задача сводится к статической, описываемой уравнением:
K?u = P
Так как многие задачи в машиностроении сводятся к статическим, то упор в книге будет делаться на них. Для рассмотрения задач будет использоваться среда MathCad 15.
Алгоритм МКЭ
Для того, чтобы решить уравнение необходимо провести предварительную подготовку. В общем и целом, алгоритм решения выглядит следующим образом:
1) Разбиение конструкции на конечные элементы;
2) Составление матрицы жёсткости каждого конечного элемента;
3) Перевод матрицы жёсткости из локальной системы координат в глобальную;
4) Составление глобальной матрицы жёсткости всей конструкции;
5) Приведение нагрузок к узловым;
6) Учёт закреплений;
7) Решение уравнения:
u = K
?P
Операция 1, на взгляд автора, интуитивно понятная и не требует пояснений.
Операции 2–6 будут подробно рассмотрены ниже.
Операция 7 будут рассмотрена подробно в примерах.
Составление матрицы жёсткости КЭ
Матрица жёсткости связывает перемещения узлов с узловыми силами, как уже говорилось в введении. Размер матрицы жёсткости N определяется количеством узлов и степенью свободы для каждого узла по формуле:
N = n?d
где N – размер матрицы жёсткости;
n – количество узлов в элементе;
d – количество степеней свободы элемента.
Например, для стержневого (ферменного) элемента, имеющего n = 2 узла, который по определению может только растягиваться или сжиматься, количество степеней свободы d = 1. Таким образом, N = n?d = 2?1 = 2. Матрица жёсткости будет иметь вид:
где K – матрица жёсткости;
k
, k
, k
, k
– элементы матрицы жёсткости.
Для конечных элементов, у которых количество степеней свободы больше единицы удобней представлять матрицу жёсткости поблочно. Например, для конечного элемента, у которого количество узлов n = 2 и количество степеней свободы d = 3матрицу жёсткости удобно представлять в виде:
где K – матрица жёсткости, размером [n?n]
k
, k
, k
, k
– элементы матрицы жёсткости, которые из себя так же представляют матрицы размером [d?d]:
Такое представление матрицы жёсткости позволит легко и удобно получить матрицу жёсткости всей конструкции.
Матрица жёсткости, обычно, составляется в локальной системе координат этого элемента. Для перевода матрицы жёсткости в глобальную систему координат используется матрица направляющих косинусов по формуле:
K
= ?
?K??
где K
– матрица жёсткости в глобальной системе координат;
? – матрица направляющих косинусов.
Рассмотрим матрицы жёсткости типовы