Назад к книге «Метод конечных элементов» [Дмитрий Альбертович Оголихин]

Метод конечных элементов

Дмитрий Альбертович Оголихин

Многие инженеры, несмотря на высшее образование, не знают, что такое метод конечных элементов (МКЭ) и оставляют задачи расчёта конструкций дорогостоящим программным продуктам типа Ansys или Nastran.Назначение этой книги – показать, что МКЭ является таким же несложным методом, как и весь сопромат.

Дмитрий Оголихин

Метод конечных элементов в MathCad

Введение

Метод конечных элементов – один из т. н. сеточных методов. Такие методы предполагают рассмотрение цельной конструкции как совокупности отдельных конечных элементов, как показано на рисунке 1.

Рисунок 1. Разбиение конструкции на конечные элементы. а – нумерация конечных элементов; б – нумерация узлов.

В качестве конечных элементов выступают знакомые нам из сопротивления материалов и строительной механики стержни, балки, плиты, оболочки и т. п. По сути своей решение методом конечных элементов сводится к решению уравнения задачи в динамической постановке:

M?d

u/dt

+C? du/dt+K?u = P

где M – матрица масс конструкции;

C – матрица демпфирования конструкции;

K – матрица жёсткости конструкции;

d

u/dt

– вектор ускорений узлов конструкции;

du/dt – вектор скоростей узлов конструкции;

u – вектор перемещений узлов конструкции;

P – вектор узловых нагрузок.

Если вектор узловых сил P не меняется во времени, то задача сводится к статической, описываемой уравнением:

K?u = P

Так как многие задачи в машиностроении сводятся к статическим, то упор в книге будет делаться на них. Для рассмотрения задач будет использоваться среда MathCad 15.

Алгоритм МКЭ

Для того, чтобы решить уравнение необходимо провести предварительную подготовку. В общем и целом, алгоритм решения выглядит следующим образом:

1) Разбиение конструкции на конечные элементы;

2) Составление матрицы жёсткости каждого конечного элемента;

3) Перевод матрицы жёсткости из локальной системы координат в глобальную;

4) Составление глобальной матрицы жёсткости всей конструкции;

5) Приведение нагрузок к узловым;

6) Учёт закреплений;

7) Решение уравнения:

u = K

?P

Операция 1, на взгляд автора, интуитивно понятная и не требует пояснений.

Операции 2–6 будут подробно рассмотрены ниже.

Операция 7 будут рассмотрена подробно в примерах.

Составление матрицы жёсткости КЭ

Матрица жёсткости связывает перемещения узлов с узловыми силами, как уже говорилось в введении. Размер матрицы жёсткости N определяется количеством узлов и степенью свободы для каждого узла по формуле:

N = n?d

где N – размер матрицы жёсткости;

n – количество узлов в элементе;

d – количество степеней свободы элемента.

Например, для стержневого (ферменного) элемента, имеющего n = 2 узла, который по определению может только растягиваться или сжиматься, количество степеней свободы d = 1. Таким образом, N = n?d = 2?1 = 2. Матрица жёсткости будет иметь вид:

где K – матрица жёсткости;

k

, k

, k

, k

– элементы матрицы жёсткости.

Для конечных элементов, у которых количество степеней свободы больше единицы удобней представлять матрицу жёсткости поблочно. Например, для конечного элемента, у которого количество узлов n = 2 и количество степеней свободы d = 3матрицу жёсткости удобно представлять в виде:

где K – матрица жёсткости, размером [n?n]

k

, k

, k

, k

– элементы матрицы жёсткости, которые из себя так же представляют матрицы размером [d?d]:

Такое представление матрицы жёсткости позволит легко и удобно получить матрицу жёсткости всей конструкции.

Матрица жёсткости, обычно, составляется в локальной системе координат этого элемента. Для перевода матрицы жёсткости в глобальную систему координат используется матрица направляющих косинусов по формуле:

K

= ?

?K??

где K

– матрица жёсткости в глобальной системе координат;

? – матрица направляющих косинусов.

Рассмотрим матрицы жёсткости типовы

Купить книгу «Метод конечных элементов»

электронная ЛитРес 100 ₽