Моделирование синергетических систем. Метод пропорций и другие математические методы. Монография
Виктор Иванович Шаповалов
В монографии на конкретных примерах описана методика создания синергетических моделей методом главных пропорций. Достоинства этого метода были наглядно продемонстрированы в знаменитой книге немецкого ученого Германа Хакена «Синергетика». При создании моделей были использованы и другие известные математические методы: линейный анализ устойчивости, некоторые аспекты теории вероятности и теории точечных отображений. На примерах социальных, экономических, биологических и физических систем показана универсальность синергетического подхода. Монография предназначена всем, кто интересуется математическим моделированием открытых систем. Она также может быть использована в качестве учебного пособия студентами различных специальностей, поскольку рассмотренные в ней задачи снабжены подробным описанием.
В. И. Шаповалов
Моделирование синергетических систем
Метод пропорций и другие математические методы
Монография
[битая ссылка] ebooks@prospekt.org
Предисловие
C середины 70-х годов прошлого века успешно развивается сравнительно молодая наука синергетика. Используя методы нелинейной динамики, она наряду с теорией неравновесных процессов изучает явление самоорганизации в открытых системах. Одним из главных результатов синергетики стало убедительная демонстрация универсальности математических моделей в самых разнообразных по своей природе системах: от физических до экономических и социальных. За последние годы эта наука доказала свою эффективность практически во всех сферах человеческой деятельности, связанных в той или иной степени с процессами самоорганизации. Недаром изучение синергетических принципов вошло в учебный план дисциплины «Концепции современного естествознания», преподаваемой на первых курсах высших учебных заведений.
Однако преимуществами этой науки на сегодняшний день мало кто смог воспользоваться на практике. Причиной этого является с одной стороны большая загруженность синергетики математическим аппаратом, а с другой стороны – неумение применять математические знания, полученные в вузе.
В то же время очевидно, что в современном усложняющемся обществе в любой сфере деятельности долгосрочное планирование невозможно без знаний количественных соотношений важнейших параметров. Разумеется, интуитивное предвидение по-прежнему играет не последнюю роль. Однако ставка только на него приводит к потере эффективности принятых мер. Несмотря на то что математические методы в биологии, социологии и экономике применялись учеными весьма давно (например, в начале прошлого столетия наблюдался бурный рост публикаций подобного рода), до сих пор многие специалисты, занимающиеся практической деятельностью, затрудняются, как уже было сказано, применять математические знания, полученные во время учебы в вузе.
Кроме того, тематически весьма насыщенные учебные программы при ограниченном числе учебных часов часто не позволяют останавливаться более подробно на практическом приложении теории. В результате у значительной части студентов – среди будущих экономистов и социологов – создается неверное представление об отрыве математической дисциплины, читаемой им несколько семестров, от реальной жизни. В жесткой же конкурентной борьбе неумение построить математическую модель (хотя бы простую) применительно к возникшей ситуации чревато заведомым проигрышем. Экономика с преобладанием таких специалистов вынуждена замыкаться на себя, поскольку за ее пределами является неконкурентоспособной.
В монографии подробно на конкретных примерах рассматривается методика построения математических моделей, позволяющих а) формулировать количественные соотношения важнейших параметров; б) прогнозировать тенденции; в) получить необходимое начальное представление о синергетическом моделировании процессов в природе и обществе.
Эта методика включает в себя как обязательный элемент составление так называемых главных пропорций. Под главной пропорцией понимается соотношение между изучаемыми величинами, взятое из опыта (сформулированное на основе пр