Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию
Л. М. Юнусова
А. Г. Лиакумович
В монографии изложены результаты исследований дегидрирования этилбензола с использованием физических воздействий, рассмотрен предполагаемый механизм интенсификации процесса при применении физических воздействий.
Юнусова Л.М., Лиакумович А.Г.
Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию. Монография
ВВЕДЕНИЕ
Cтирол ? один из важнейших продуктов нефтехимии, сырье для получения полистирола и различных сополимеров. Производство стирола (СТ) ? крупнотоннажное, мировые мощности по СТ в настоящее время составляют свыше 30 млн. т/год [1].
90 % мирового производства СТ получают дегидрированием этилбензола (ЭБ). Процесс проводят на железооксидном катализаторе (ЖОК) в газовой фазе при температуре 580-630 °C. Для смещения равновесия реакции в сторону образования продуктов, ЭБ разбавляют водяным паром в массовом соотношении 1:3 [2]. Использование большого количества перегретого пара делает этот процесс дорогостоящим. Проблемы интенсификации процесса дегидрирования ЭБ в СТ, как правило, решаются использованием усовершенствованных катализаторов или оптимизацией технологических параметров и конструкций аппаратов. Изучению этих путей посвящено большое количество работ, но, к сожалению, возможности этих вариантов ограничены.
В настоящее время широкое распространение в химической технологии приобретают методы физического воздействия на химические реакции. Появились такие новые области химии, как микроволновая химия, звукохимия, плазмохимия, химия ударных волн. С каждым годом увеличивается количество сообщений об успешном применении физических воздействий для проведения или ускорения химических реакций. Установлено, что физические воздействия ускоряют химические процессы иногда в 100 раз, увеличивают выход продукта реакции и при этом требуется гораздо меньше энергии. В связи с этим, одним из путей решения проблемы интенсификации производства СТ может быть переход на новые технологии, использующие физические явления. В данной работе рассмотрены предпосылки и результаты использования физических воздействий в процессе дегидрирования ЭБ.
СОКРАЩЕНИЯ
Ак – акустика
ВЧ – высокочастотное
ГЖХ ? газожидкостная хроматография
ДАК – динитрил азобисизомаслянной кислоты
ДС ?диссипативная структура
ЖОК – железооксидный катализатор
ЗВ ? звук
ИК-спектр – инфракрасный спектр
МВИ – микроволновое излучение
НЧ МК – низкочастотные механические колебания
ОВП – окислительно-восстановительный потенциал
ПМ – предэкспоненциальный множитель
ПМП – постоянное магнитное поле
САОА ? суммарная антиоксидантная активность
СВЧ – сверхвысокая частота
СТ – стирол
УВ – углеводород
УЗ – ультразвук
УЭП – удельная электропроводность
ЭБ – этилбензол
ЭМИ – электромагнитное излучение
ЭМП – электромагнитное поле
1ИСТОРИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ ПРОЦЕССА ДЕГИДРИРОВАНИЯ ЭТИЛБЕНЗОЛА. ИСПОЛЬЗОВАНИЕ ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ
1.1 Основные этапы развития процесса дегидрирования этилбензола
С появлением крупнотоннажных производств мономеров, масштабы которых непрерывно растут (так, мощности по СТ возросли от 25 тысяч т до 500 тысяч т на одном единичном агрегате), идет непрерывный поиск и исследование путей повышения эффективности этих процессов. Действительно, при таких масштабах увеличение выхода продукта хотя бы на 1 % приводит к получению дополнительной прибыли в несколько десятков млн. рублей.
Рассмотрим в общих чертах пути, которые прошла промышленность дегидрирования ЭБ в СТ за последние 30-40 лет.
Первоначально все исследования были направлены на поиск нового катализатора дегидрирования ЭБ для замены немецкого катализатора на основе оксида цинка, т.к. выход СТ на этом катализаторе был невелик. Причем катализатор очень быстро закоксовывался и требовалась регенерация каждые 3-4 часа.
В середине 70-х годов Воронежский филиал НИИМСК предложил более активный