Байесовский анализ, когда оцениваемый параметр является случайным нормальным процессом
Л. Н. Слуцкин0.0
2010 год 501
О книге
Входит в серию: Прикладная эконометрика. Научные статьиРассмотрена задача байесовского оценивания последовательности неизвестных средних значений θ1,θ2,…,θk,… по имеющимся наблюдениям X1,X2,…,Xk,… в ситуации, когда наблюдения X1,X2,…, Xk подчиняются многомерному нормальному распределению с вектором средних (θ1,θ2,…,θk) и известной ковариационной матрицей. Предполагается, что параметры θ1,θ2,…,θk,… образуют гауссовский процесс. Доказывается сходимость (при k→∞) ковариационных матриц частного апостериорного распределения последовательности параметров; подробно анализируется пример, в котором размерность наблюдений X1,X2,…,Xk,… полагается равной единице, а последовательность θ1,θ2,…,θk,… образует гауссовский процесс авторегрессии первого порядка.
Рейтинги этой книги | за 2010 год | за всё время |
Образовательная, прикладная, научно-популярная литература | №677 | №17822 |
Среди всех книг | №8446 |