Байесовский анализ, когда оцениваемый параметр является случайным нормальным процессом

0.0

О книге

Входит в серию: Прикладная эконометрика. Научные статьи

Рассмотрена задача байесовского оценивания последовательности неизвестных средних значений θ1,θ2,…,θk,… по имеющимся наблюдениям X1,X2,…,Xk,… в ситуации, когда наблюдения X1,X2,…, Xk подчиняются многомерному нормальному распределению с вектором средних (θ1,θ2,…,θk) и известной ковариационной матрицей. Предполагается, что параметры θ1,θ2,…,θk,… образуют гауссовский процесс. Доказывается сходимость (при k→∞) ковариационных матриц частного апостериорного распределения последовательности параметров; подробно анализируется пример, в котором размерность наблюдений X1,X2,…,Xk,… полагается равной единице, а последовательность θ1,θ2,…,θk,… образует гауссовский процесс авторегрессии первого порядка.

Рейтинги этой книги за 2010 год за всё время
Образовательная, прикладная, научно-популярная литература 678 17892
Среди всех книг 8467

Остальные книги из серии „Прикладная эконометрика. Научные статьи“ 252 книги

Другие книги автора – Л. Н. Слуцкин 13 книг