Назад к книге «Данные для машинного обучения: Сбор, очистка, разметка» [Артем Демиденко]

Данные для машинного обучения: Сбор, очистка, разметка

Артем Демиденко

Окунитесь в мир данных с книгой "Данные для машинного обучения: Сбор, очистка, разметка". Эта фундаментальная работа предлагает уникальную возможность взглянуть на хранение и обработку данных через призму новейших технологий. Каждая глава раскрывает секреты ключевых процессов работы с данными: от их сбора до финального формирования в удобные для обучающих моделей форматы. Узнайте, почему высокое качество данных – это основа успеха в разработке моделей, как правильно определять цели и выбирать стратегически верные методы обработки текстовых, изображенческих и временных рядов, и как автоматизировать процессы даже при минимальных ресурсах. Автор подробно освещает этичные и юридические аспекты работы с данными, акцентируя внимание на важности очистки, разметки и нормализации. Эта книга станет вашим надежным проводником в сложной, но захватывающей сфере машинного обучения, открывая перед вами перспективы успешного управления данными. Обложка: Midjourney – Лицензия

Артем Демиденко

Данные для машинного обучения: Сбор, очистка, разметка

Введение

В данной книге точки, использованные в коде в начале строки (….), служат лишь для наглядности и обозначают количество пробелов, которые следует вставить в код. В реальной работе с кодом точки заменяются пробелами.

Современный мир движется в сторону использования данных как основного ресурса, и в этой новой реальности особую роль играет машинное обучение. Успех алгоритмов машинного обучения, от простых моделей до сложных нейронных сетей, напрямую зависит от качества и объема доступных для обучения данных. В этой главе мы разберем ключевые аспекты работы с данными: их сбор, очистку и разметку. Читателям будут представлены не только теоретические основы, но и практические примеры и советы, которые помогут эффективно организовать каждый этап.

Начнем с определения данных в контексте машинного обучения. Данные – это факты и цифры, которые помогают в анализе и принятии решений. В машинном обучении мы работаем не просто с любыми данными, а с метаданными, которые позволяют моделям учиться на основании предыдущего опыта. Например, если мы создаем модель для предсказания цен на жилье, данные могут включать информацию о местоположении, количестве комнат, состоянии ремонта и даже времени покупки. Таким образом, сложно переоценить важность правильного выбора данных; именно качество этих данных часто определяет успешность алгоритма.

Перейдем к этапу сбора данных. За последние годы разработано множество методов и инструментов для автоматизации этого процесса. Можно начать с веб-скрапинга, особенно если вы работаете с общедоступными данными. Но не забывайте о правовых аспектах и политике конфиденциальности при сборе информации. Например, библиотека Python `BeautifulSoup` отлично подходит для извлечения данных из HTML-страниц. Вот краткий код, демонстрирующий, как начать этот процесс:

```python

import requests

from bs4 import BeautifulSoup

url = 'http://example.com'

response = requests.get(url)

soup = BeautifulSoup(response.text, 'html.parser')

data = soup.find_all('div', class_='data-class')

for item in data:

....print(item.text)

```

Однако не всегда возможно собрать необходимые данные самостоятельно. В таких случаях могут быть полезны открытые наборы данных. Многие организации, такие как Kaggle или UCI Machine Learning Repository, предлагают доступ к большому количеству качественных наборов данных для различных задач. Работая с открытыми данными, важно тщательно проверять их достоверность и актуальность.

После сбора данных наступает важный этап очистки. Часто данные содержат ошибки, пропуски и шум, что может искажать результаты машинного обучения. Очистка данных – критически важный процесс. Он включает в себя удаление дубликатов, заполнение пропусков и устранение выбросов. Один из подходов к заполнению пропусков – использование средних значений или медиан, но иногда более сложные методы, такие как регрессионные модели для предсказания недостающих значений, могут дать лучший результат. Пример использования библиот

Купить книгу «Данные для машинного обучения: Сбор, очистка, разметка»

электронная ЛитРес 199 ₽