Назад к книге «Методы определения производных функций и нейросети.Выполнение экзаменационных заданий.» [Николай Петрович Морозов]

Методы определения производных функций и нейросети

Николай Петрович Морозов

Данная книга является второй книгой с курсом практических занятий по математическому анализу. Точнее, по второй его части: дифференциальному исчислению, практической основой которого являются способы и методы нахождения производных функций.

Николай Морозов

Методы определения производных функций и нейросети

Глава 1

Данная книга является второй книгой с курсом практических занятий по математическому анализу. Точнее, по второй его части: дифференциальному исчислению, практической основой которого являются способы и методы нахождения производных функций.

Разговор о производной функции и методах и способах ее нахождения начнем с предложения к нейросетям дать характеристику этим методам и способам:

Маша

Существует несколько методов определения производных функций:

1. **Определение с помощью предела**:

Производная функции \( f(x) \) в точке \( x = a \) определяется как:

\[ f'(a) = \lim_{h \to 0} \frac{f(a+h) – f(a)}{h} \]

2. **Правила дифференцирования**:

– **Правило суммы**: \( (f + g)' = f' + g' \)

– **Правило разности**: \( (f – g)' = f' – g' \)

– **Произведение**: \( (fg)' = f'g + fg' \)

– **Частное**: \( \left(\frac{f}{g}\right)' = \frac{f'g – fg'}{g^2} \)

3. **Стандартные производные**: Знание производных основных функций:

– \( \frac{d}{dx}(x^n) = nx^{n-1} \)

– \( \frac{d}{dx}(\sin x) = \cos x \)

– \( \frac{d}{dx}(\cos x) = -\sin x \)

– \( \frac{d}{dx}(e^x) = e^x \)

– \( \frac{d}{dx}(\ln x) = \frac{1}{x} \)

Купить книгу «Методы определения производных функций и ...»

электронная ЛитРес 139 ₽