Усиленное обучение
Джеймс ДевисНачать читать книгу
О книге
Входит в серию: Создание нейросетейДанное руководство по усиленному обучению (Reinforcement Learning, RL), охватывает теоретические основы, практические применения и современные достижения. В начале дается определение RL, его исторический контекст и ключевые отличия от других видов машинного обучения. Примеры применения RL охватывают игры, робототехнику, финансовые рынки и управление ресурсами. Математические основы включают марковские процессы принятия решений, состояния, действия, награды и политики, а также Беллмановские уравнения и итерацию ценности.
Основные алгоритмы RL, такие как метод Монте-Карло, Q-Learning, SARSA, методы градиента политики, REINFORCE и Actor-Critic, рассматриваются вместе с моделями на основе планирования и глубокого усиленного обучения (DQN, DDPG, A3C). Практическая часть книги включает использование OpenAI Gym и других сред, настройку и тестирование моделей, а также примеры кода на Python с использованием библиотек TensorFlow и PyTorch.
Графики цен
Рейтинги этой книги | за 2024 год | за всё время |
Самоучители | №68 | №160 |
Программирование | №28 | №74 |
Книги о компьютерах | №21 | №642 |
Среди всех книг | №25030 |