Назад к книге «Элементы комбинаторики и теории вероятностей» [Николай Петрович Морозов]

Элементы комбинаторики и теории вероятностей

Николай Петрович Морозов

Эта книга продолжает разговор, начатый моей книгой «Элементы теории множеств и математической логики», и является практикумом для студентов гуманитарных вузов по данным математическим дисциплинам. Эти две книги обобщают мой опыт проведения практических занятий и семинаров в СПбГИК и СПб филиале Академии Таможенной Службы.

Николай Морозов

Элементы комбинаторики и теории вероятностей

1. Основные формулы комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств – правило суммы и правило произведения [1] .

1.1.Правило суммы

Если конечные множества не пересекаются, то число элементов X U {или} Y равно сумме числа элементов множества X и числа элементов множества Y.

То есть, если на первой полке стоит X книг, а на второй Y, то выбрать книгу из первой или второй полки, можно X+Y способами.

1.2.Правило произведения

Если элемент X можно выбрать k способами, а элемент Y – m способами, то пару (X,Y) можно выбрать k*m способами.

То есть, если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Пересекающиеся множества

Но бывает так, что множества X и Y пересекаются, тогда пользуются формулой, где X и Y – множества, а – область пересечения.

Пример 1. Пусть 20 человек знают английский и 10 – немецкий, из них 5 знают и английский, и немецкий. Сколько человек всего знают один язык?

Ответ: 10+20—5=25 человек.

Очень часто для наглядного решения задачи применяются круги Эйлера.

Пример 2. Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским – 28, французским – 42. Английским и немецким одновременно владеют 8 человек, английским и французским – 10, немецким и французским – 5, всеми тремя языками – 3. Сколько туристов не владеют ни одним языком?

Решение: Выразим условие этой задачи графически (см. рис.2.1). Обозначим кругом тех, кто знает английский, другим кругом – тех, кто знает французский, и третьим кругом – тех, кто знают немецкий.

Рис.2.1.

Рис.2.2.

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10—3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8—3=5 человек, а немецким и французским 5—3=2 туриста. Вносим эти данные в соответствующие части рисунка 2.2.

Определим теперь, сколько человек владеют только одним, из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским – 30 человек (см. рис.2.3).

Рис.2.3.

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.

1.3. Размещения без повторений

Пример 3. Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?

Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.

Если X-множество, состоящие из n элементов, m?n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество А, содержащее m элементов из m элементов.

Количество всех размещений из n элементов по m обозначают

(2.1)

n! – n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n. n!=1*2*3*…*n. 0!=1.

Значит, ответ на выше поставленную задачу будет

1.4. Перестановки без повторений

В случае n=m (см. размещения без повторений) А из n элементов по m называется перестановкой множества x.

Количество всех перестановок из n элементов

Купить книгу «Элементы комбинаторики и теории вероятностей»

электронная ЛитРес 199 ₽